APPROXIMATING FIXED POINTS OF NONEXPANSIVE TYPE MAPPINGS

HEMANT K. PATHAK and MOHAMMAD S. KHAN

(Received 1 March 1999)

ABSTRACT. In a uniformly convex Banach space, the convergence of Ishikawa iterates to a unique fixed point is proved for nonexpansive type mappings under certain conditions.

2000 Mathematics Subject Classification. 47H10, 54H25.

1. Introduction. Let D be a nonempty, closed, and convex subset of a uniformly convex Banach space B, and $T : D \to D$ with fixed point set $F(T)$. Recently, Ghosh and Debnath [1] introduced the generalized versions of the conditions of Senter and Dotson [6] as: the mapping T with $F(t) \neq \emptyset$ is said to satisfy the following conditions.

CONDITION 1.1. If there exists an nondecreasing function $f : [0, \infty) \to [0, \infty)$ with $f(0) = 0$ and $f(r) > 0$ for all $r \in (0, \infty)$ such that

$$
\| (1 - TT\mu)x \| \geq f(d(x,F)) \quad \forall x \in D,
$$

(1.1)

where $T\mu x = (1 - \mu)x + \mu Tx$ with $0 \leq \mu \leq \beta < 1$ and $d(x,F) = \inf_{z \in F} \| x - z \|$.

CONDITION 1.2. If there exists a positive real number k such that

$$
\| (1 - TT\mu)x \| \geq k d(x,F(T)) \quad \forall x \in D.
$$

(1.2)

When $\mu = 0$, both conditions reduce to those of Senter and Dotson [6]. It may be noted that the mapping which satisfies Condition 1.2 also satisfies Condition 1.1.

In this paper, we wish to use Conditions 1.1 and 1.2 to prove the convergence of Ishikawa iterates [3] of certain nonexpansive type mappings.

2. Ishikawa’s iterative process. Let D be a convex subset of a Banach space B and $T : D \to D$. For $x_1 \in D$, Ishikawa [3] defined a sequence $\{x_n\}$ such that

$$
x_{n+1} = (1 - \alpha_n)x_n + \alpha_n T[(1 - \beta_n)x_n + \beta_n Tx_n],
$$

(2.1)

where $\{\alpha_n\}_{n=1}^{\infty}$ and $\{\beta_n\}_{n=1}^{\infty}$ are sequences of nonnegative numbers with $0 \leq \alpha_n \leq \beta_n \leq 1$, $\lim_{n \to \infty} \beta_n = 0$, and $\sum_{n=1}^{\infty} \alpha_n \beta_n = \infty$.

Using notation for $T\mu x$ of Section 1, (2.1) may be written as

$$
x_{n+1} = (1 - \alpha_n)x_n + \alpha_n TT\beta_n x_n.
$$

(2.2)
In this paper, we assume that \(\alpha_n \) and \(\beta_n \) satisfy
(i) \(0 < a \leq \alpha_n < b < 1 \),
(ii) \(0 \leq \beta_n \leq \beta < 1 \).

We denote the sequence (2.1) by \(M(x_1, \alpha_n, \beta_n, T) \), where \(\alpha_n \) and \(\beta_n \) satisfy (i) and (ii). We also assume that \(\alpha_n = \lambda \) and \(\beta_n = \mu \) for all \(n \) in the Ishikawa iterates defined above, that is,
\[
 x_{n+1} = T_{\lambda, \mu}^n x_1, T_{\lambda, \mu} = (1 - \lambda)I + \lambda T \left[(1 - \mu)I + \mu T \right].
\] (2.3)

3. Nonexpansive type mappings and convergence theorems. Before we state and prove our main results we need to recall several definitions.

Definition 3.1. A mapping \(T : D \to D \) is called nonexpansive if for all \(x,y \in D \),
\[
 ||Tx - Ty|| \leq ||x - y||. \tag{3.1}
\]

Definition 3.2. A mapping \(T : D \to D \) is called generalized nonexpansive if it satisfies the condition, for all \(X,Y \in D \),
\[
 ||Tx - Ty|| \leq a ||x - y|| + b \left(||x - Tx|| + ||y - Ty|| \right) + c \left(||x - Ty|| + ||y - Tx|| \right), \tag{3.2}
\]
where \(a,c \geq 0, b > 0 \), and \(a + 2b + 2c \leq 1 \). This type of mapping was introduced by Hardy and Rogers [2] in metric spaces.

Definition 3.3. A mapping \(T : D \to D \) is said to satisfy Condition 1.1 if for all \(x,y \in D \),
\[
 ||Tx - Ty|| \leq \max \left\{ \beta ||x - y||, \frac{||x - Tx|| + ||y - Ty||}{2}, \frac{||x - Ty|| + ||y - Tx||}{2} \right\}, \tag{3.3}
\]
and \(T \) is said to satisfy Condition 1.2 if for all \(x,y \in D \),
\[
 ||Tx - Ty|| \leq \max \left\{ \beta ||x - y||, \frac{||x - Tx|| + ||y - Ty||}{2}, ||x - Ty||, \beta ||y - Tx|| \right\}, \tag{3.4}
\]
where \(0 \leq \mu \leq \beta < 1 \).

Remark 3.4. It is to be noted that
(i) a nonexpansive mapping is generalized nonexpansive,
(ii) generalized nonexpansive mappings and mappings satisfying Condition 1.1 also satisfy Condition 1.2, but the converse is not true as can be seen from the following example.

Example 3.5. Let \(B = R \) with the usual norm and let \(D = D_1 \cup D_2 \) where
\[
 D_1 = \frac{m}{n}, \quad m = 0,1,3,9,\ldots; \quad n = 1,4,\ldots,3k + 1,
\]
\[
 D_2 = \frac{m}{n}, \quad m = 1,3,9,27,\ldots; \quad n = 2,5,\ldots,3k + 2. \tag{3.5}
\]
Define $T : D \to D$ by
\[
T x = \begin{cases}
 \frac{3x}{4}, & x \in D_1, \\
 \frac{x}{2}, & x \in D_2.
\end{cases}
\] (3.6)

Then T satisfies Condition 1.2, but it does not satisfy Condition 1.1 and coincidentally that T is not a generalized nonexpansive mapping; for instance, take $x = 1, y = 3/5$. Then
\[
\|Tx - Ty\| = \frac{9}{20} \geq \max \left\{ \frac{2}{5} \beta, \frac{11}{40}, \frac{17}{40} \right\}.
\] (3.7)

We now show that a mapping T satisfying Condition 1.2 is a quasi-nonexpansive mapping. Suppose p is a fixed point of T. Then putting $y = p$ in (3.4) and for $Tx \neq p$, we obtain
\[
0 < \|Tx - p\| = \|Tx - Tp\| \leq \max \left\{ \beta \|x - y\|, \frac{1}{2} \|x - Tp\|, \beta \|p - Tp\| \right\}.
\] (3.8)

Since $\|Tx - p\| \leq \beta \|p - Tp\|$ is not possible, we have
\[
\|Tx - p\| \leq \max \left\{ \frac{1}{2} (\|x - p\| + \|p - Tx\|), \|x - p\| \right\}.
\] (3.9)

which implies that
\[
\|Tx - p\| \leq \|x - p\|.
\] (3.10)

Therefore, T is quasi-nonexpansive. Next we show that
\[
F(T) = F(T_{\lambda, \mu}) = F(TT_{\mu}).
\] (3.11)

Obviously $F(T) \subset F(T_{\lambda, \mu})$.

Let $p \in F(T_{\lambda, \mu})$. Then $T_{\lambda, \mu} p = p$ implies that $T_{\lambda, \mu} p = (1 - \lambda) Ip + \lambda T[(1 - \mu) Ip + \mu Tp] = (1 - \lambda) p + \lambda TT_{\mu} p$ and so $TT_{\mu} p = p$.

It follows from (3.4) that
\[
\|Tp - p\| = \|T - TT_{\mu} p\| \leq \max \left\{ \beta \|p - Tp\|, \frac{1}{2} (\|p - Tp\| + \|T_{\mu} p - p\|), 0, \beta \|T_{\mu} p - Tp\| \right\}.
\] (3.12)
whence we obtain $TP = p$, since $\max\{\beta\mu, (1/2)(1 + \mu), \beta(1 - \mu)\} < 1$. Thus, $F(T_{\lambda, \mu}) \subset F(T)$ leading to the result (3.11).

Now, we show that the mapping T satisfies Condition 1.2. We have from (3.4)

$$||TT_\mu x - p|| = ||TT_\mu x - TP||$$

$$\leq \max\left\{\beta||T_\mu x - P||, \frac{1}{2}||T_\mu x - TT_\mu x||, ||T_\mu x - p||, \beta||p - TT_\mu x||\right\}$$

$$= \max\left\{||T_\mu x - p||, \frac{1}{2}||T_\mu x - TT_\mu x||, ||p - TT_\mu x||\right\}$$

$$\leq \max\left\{||T_\mu x - p||, \frac{1}{2}||T_\mu x - TT_\mu x||, ||p - T_\mu x||\right\}$$

$$= \max\left\{||T_\mu x - p||, \frac{1}{2}||T_\mu x - TT_\mu x||\right\}$$

$$\leq \max\left\{\left[(1 - \mu)||x - p|| + \mu||T_\mu x - P||\right], \frac{1}{2}||x - T_\mu x|| + ||x - TT_\mu x||\right\}$$

$$\leq \max\left\{\left[(1 - \mu)||x - p|| + \mu||x - P||\right], \frac{1}{2}[\mu||x - T_\mu x|| + ||x - TT_\mu x||]\right\}$$

$$\leq \max\left\{||x - p||, \frac{1}{2}[\mu(||x - p|| + ||p - T_\mu x||) + ||x - TT_\mu x||]\right\}$$

$$\leq \max\left\{||x - p||, \frac{1}{2}[2\mu||x - p|| + ||x - TT_\mu x||]\right\}.$$

(3.13)

Also, we know that

$$||TT_\mu x - p|| \geq ||x - p|| - ||x - TT_\mu x||.$$

(3.14)

From (3.13) and (3.14), we deduce that

$$\max\left\{||x - p||, \frac{1}{2}[2\mu||x - p|| + ||x - TT_\mu x||]\right\} \geq ||x - p|| - ||x - TT_\mu x||$$

(3.15)

which implies $||x - TT_\mu x|| \geq (2(1 - \mu)/3)||x - p||$. Then we may write

$$||x - TT_\mu x|| \geq k||x - p||,$$

(3.16)

where

$$0 < k = \frac{2(1 - \mu)}{3} < 1.$$

(3.17)

Thus T satisfies Condition 1.2 with $0 < k < 1$. Consequently, by Maiti and Ghosh [4, Theorem 1, page 114], we have the following.

Theorem 3.6. Let D be a closed convex Banach space B, and let $T : D \to D$ be a mapping which satisfies (3.4) and has a fixed point in D. Then T satisfies Condition 1.2 and, for any $x_1 \in D$, $M(x_1, \alpha_n, \beta_n, T)$ converges to the fixed point of D.

We next consider a mapping T which satisfies Condition 1.1, and a variant of Theorem 3.6 is stated below.
Theorem 3.7. Let D be a closed convex bounded subset of a uniformly convex Banach space B, and let $T : D \rightarrow D$ be a mapping satisfying (3.3). Then T satisfies Condition 1.1, and for any $x_1 \in D$, $M(x_1, \alpha_n, \beta_n, T)$ converges to the unique fixed point of T.

Proof. The mapping T satisfying (3.3) also satisfies Naimpally and Singh [5, Condition II(D)], and so T has a unique fixed point. We now show that T is quasinonexpansive. Let $p \in F(T)$. Then, for any $x \in D$, we have from (3.3),

$$
\|Tx - p\| = \|T - Tp\| \leq \max \left\{ \beta \|x - p\|, \frac{1}{2} \|x - Tx\|, \frac{1}{2} [\|x - p\| + \|p - Tx\|] \right\}
$$

(3.18)

implying

$$
\|Tx - p\| \leq \|x - p\|.
$$

(3.19)

Next, we show that T satisfies Condition 1.1.

Let $p \in F(T)$. Then we have from (3.1),

$$
\|TT_{\mu}x - p\| = \|TT_{\mu}x - T\|
$$

$$
\leq \max \left\{ \beta \|T_{\mu}x - p\|, \frac{1}{2} \|T_{\mu}x - TT_{\mu}x\|, \frac{1}{2} [\|T_{\mu}x - p\| + \|p - TT_{\mu}x\|] \right\}
$$

$$
\leq \max \left\{ \beta \|T_{\mu}x - p\|, \frac{1}{2} [\|T_{\mu}x - p\| + \|p - TT_{\mu}x\|] \right\}
$$

$$
\leq \max \left\{ \beta \|T_{\mu}x - p\|, \|T_{\mu}x - p\| \right\}
$$

$$
= \|T_{\mu}x - p\| = \|x - p\|.
$$

(3.20)

From (3.14) and (3.20), we derive

$$
\|x - p\| \geq \|x - p\| - \|x - TT_{\mu}x\|
$$

(3.21)

which implies that

$$
\|x - TT_{\mu}x\| \geq f(0).
$$

(3.22)

Thus T satisfies all conditions which ensure the convergence of $M(x_1, \alpha_n, \beta_n, T)$.

\[\square\]

References

Hemant K. Pathak: Department of Mathematics, Kalyan Mahavidyalaya, Bilai Nagar, CG 490006, India

E-mail address: sycomp@satyam.net.in

Mohammad S. Khan: Department of Mathematics and Statistics, Sultan Qaboos University, P.O. Box 36, P. Code 123, Al-Khod Muscat, Oman

E-mail address: mohammad@squ.edu.om
Special Issue on
Time-Dependent Billiards

Call for Papers

This subject has been extensively studied in the past years for one-, two-, and three-dimensional space. Additionally, such dynamical systems can exhibit a very important and still unexplained phenomenon, called as the Fermi acceleration phenomenon. Basically, the phenomenon of Fermi acceleration (FA) is a process in which a classical particle can acquire unbounded energy from collisions with a heavy moving wall. This phenomenon was originally proposed by Enrico Fermi in 1949 as a possible explanation of the origin of the large energies of the cosmic particles. His original model was then modified and considered under different approaches and using many versions. Moreover, applications of FA have been of a large broad interest in many different fields of science including plasma physics, astrophysics, atomic physics, optics, and time-dependent billiard problems and they are useful for controlling chaos in Engineering and dynamical systems exhibiting chaos (both conservative and dissipative chaos).

We intend to publish in this special issue papers reporting research on time-dependent billiards. The topic includes both conservative and dissipative dynamics. Papers discussing dynamical properties, statistical and mathematical results, stability investigation of the phase space structure, the phenomenon of Fermi acceleration, conditions for having suppression of Fermi acceleration, and computational and numerical methods for exploring these structures and applications are welcome.

To be acceptable for publication in the special issue of Mathematical Problems in Engineering, papers must make significant, original, and correct contributions to one or more of the topics above mentioned. Mathematical papers regarding the topics above are also welcome.

Authors should follow the Mathematical Problems in Engineering manuscript format described at http://www.hindawi.com/journals/mpe/. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/ according to the following timetable:

<table>
<thead>
<tr>
<th>Event</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript Due</td>
<td>December 1, 2008</td>
</tr>
<tr>
<td>First Round of Reviews</td>
<td>March 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>June 1, 2009</td>
</tr>
</tbody>
</table>

Guest Editors

Edson Denis Leonel, Departamento de Estatística, Matemática Aplicada e Computação, Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista, Avenida 24A, 1515 Bela Vista, 13506-700 Rio Claro, SP, Brazil; edleonel@rc.unesp.br

Alexander Loskutov, Physics Faculty, Moscow State University, Vorob’evy Gory, Moscow 119992, Russia; loskutov@chaos.phys.msu.ru

Hindawi Publishing Corporation
http://www.hindawi.com